8 v 5 2 5 Ja n 20 02 Nonadiabatic conditional geometric phase shift with NMR

نویسندگان

  • Wang Xiang - Bin
  • Matsumoto Keiji
چکیده

A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance(NMR) under adiabatic conditions. By the adiabatic requirement, the result is inexact unless the Hamiltonian changes extremely slowly. However, in quantum computation, everything must be completed within the decoherence time. High running speed of every gate in quantum computation is demanded because the power of a quantum computer can be exponentially proportional to the maximum number of logic gate operations that can be made sequentially within the decoherence time. The adiabatic condition makes any fast conditional Berry phase(cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonadiabatic conditional geometric phase shift with NMR.

A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase)...

متن کامل

A ug 2 00 1 Nonadiabatic conditional geometric phase shift with NMR

A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance(NMR) under adiabatic conditions. By the adiabatic requirement, the result is inexact unless the Hamiltonian changes extremely slowly. However, in quantum computation, everything must be completed within the decoherence tim...

متن کامل

Geometric Quantum Computation with NMR

Jonathan A. Jones, Vlatko Vedral, Artur Ekert and Giuseppe Castagnoli Centre for Quantum Computation, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK OCMS, New Chemistry Laboratory, South Parks Road, Oxford OX1 3QT, UK Elsag,Via Puccini 2, 1615 Genova, Italy (February 29, 2008) An exciting recent development has been the discovery that the computational power of quantum computers exceeds t...

متن کامل

2 5 Ja n 20 02 Degeneration of the Leray spectral sequence for certain geometric quotients

We prove that the Leray spectral sequence in rational cohomology for the quotient map U n,d → U n,d /G where U n,d is the affine variety of equations for smooth hypersurfaces of degree d in P n (C) and G is the general linear group, degenerates at E 2 .

متن کامل

ep - p h / 02 01 01 8 v 2 1 5 Ja n 20 02 hep - th / 0201018 Deconstruction , G 2 Holonomy , and Doublet - Triplet Splitting

We describe a mechanism for using discrete symmetries to solve the doublet-triplet splitting problem of four dimensional supersymmetric GUT's. We present two versions of the mechanism, one via " deconstruction, " and one in terms of M-theory compactification to four dimensions on a manifold of G 2 holonomy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002